SPEQTACLE: An automated generalized fuzzy C-means algorithm for tumor delineation in PET
نویسندگان
چکیده
منابع مشابه
A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET.
PURPOSE Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sen...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملImage segmentation by generalized hierarchical fuzzy C-means algorithm
Fuzzy c-means (FCM) has been considered as an effective algorithm for image segmentation. However, it still suffers from two problems: one is insufficient robustness to image noise, and the other is the Euclidean distance in FCM, which is sensitive to outliers. In this paper, we propose two new algorithms, generalized FCM (GFCM) and hierarchical FCM (HFCM), to solve these two problems. Traditio...
متن کاملAn Efficient Optimality Test for the Fuzzy c-Means Algorithm
The Fuzzy c-means algorithm (FCM) is proved to converge to either local minimum or saddle point by Bezdek et al.. However, it is problematical to judge the local minimum of a solution of the FCM in an easy way. In this paper, the Hessian matrix of one reduced objective function of the FCM is got and analyzed. Based on this study, a new optimality test of fixed points of the FCM is given, and it...
متن کاملAn Adaptive Fuzzy C-Means Algorithm for Improving MRI Segmentation
In this paper, we propose new fuzzy c-means method for improving the magnetic resonance imaging (MRI) segmentation. The proposed method called “possiblistic fuzzy c-means (PFCM)” which hybrids the fuzzy c-means (FCM) and possiblistic c-means (PCM) functions. It is realized by modifying the objective function of the conventional PCM algorithm with Gaussian exponent weights to produce memberships...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Physics
سال: 2015
ISSN: 0094-2405
DOI: 10.1118/1.4929561